
national accelerator laboratory 
Pub-71 -023-T 

NON-PLANAR HELICITY POLE COUPLINGS: 

DUALITY AND THE FEYNMAN GRAPH. I 

David Gordon 
National Accelerator Laboratory, Batavia, Illinois 60510 

November 1971 

@ Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 



-2- 

ABSTRACT 

THY-23 

We study, in the spirit of Gribov’s Reggeon calculus,a particular 

non-planar elastic 6-point amplitude which contributes to the helicity 

pole limit (s, M2 + m , s/M2 * m and t fixed) of the single particle 

distribution. We find “third double spectral function” effects analogous 

to those which appear in 2-2 amplitudes. In particular we find: 

(1) nonsense-triple Regge wrong signature fixed poles, (2) the triple 

pomeron vertex to be finite at t = 0 if the trajectorie’ssslopeLis.non-.zero 

and its intercept unity, and (3) an amusing cancellation mechanism 

between spurious singularities which eliminates them from the 3-3 

amplitude. In addition, we conjecture an asymptetic link between the 

high-energy Regge limits of $3 theory and the high-energy Regge 

behavior of dual tree and dual loop amplitudes. 



-3- THY-23 

I. INTRODUCTION 

It has been a tradition in particle physics, ranging over many 

years, to discuss both the analyticity and high energy properties of 

3 a Feyrnnan graph or some iterative sum of graphs in 4 theory. As 

various “new” developments appeared--the $I 3 theory was interrog&,ed 

One may simply site, for example, the attempts to ‘.lprove”: 

Mandelstam anaIy?lci’ty-[-l], ReggG behavior [Z] and more recently ~- .-~ __ 

eikonalization [3). Certainly the simplicity of the $3 theory, as 

compared to the more complex field theories such as quantum electro- 

dynamics or the cr- model, makes this $3 choice a bit irresistible. 

In fact quite recently we !4] have again appealed* to 4 3 theory 

to investigate a- beautiful new development due to Mueller [5]!, which 

relates t-he -singl.e,-pa&tic&e distributioXn toa tie11 ~defmeddiscontinuity of 

an elastic six-point function, In Ref. ,[4]. we restricte-d~ourselvesto a 

particular sum of planar $3 Feynman graphs, to study,in the strong 

coupling regime, the helicity pole limit k’612 of the single particle 

distribution. (See Fig. 1. ) Here we shall investigate the same limit, 

yet now looking at a non-planar set of graphs. (See Fig. 2.) We 

obtain new-~resu1.s such as; the non-va_nishing of the triple-pomeronvertex --_ 

at t = 0, a,(O) = 1 and CY~ # 0. In addit ~~~ ion we see some _ II&p’ -p+,-zles 

analogous to “third double spectral function” [ 11 effectsappearing in 

two-to-two amplitudes and which relate to the spurious singularities 

discussed in Ref. 1411. 
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We have subtitled our paper, “Duality and the Feynrnan Graph, ” 

inspite of the fact that none of the graphs considered here are dual, i.e. , 

they do not have Regge behavior for any channel one can reach via crossing, 

nor is the amplitude identically equal to the sum over the resonances of the 

amplitude in a given crossed channel. As will be more fully discussed 

in a subsequent paper, “Pionization Limit for the Single Particle 

Distribution: Duality and the Feynman Graph, II, ” in a asymptotic sense 

there appears to be a fascinating connection between the d5 results and 

the dual model, We shall discuss this asymptotic link in Section V. 

Before concluding our introductory remarks, we should remind the 

reader of a long standing dilemma of the C#I 3 model, especially since 

one of our central themes will be abstracting from the theory properties 

of the dual model. To wit the theory has no vacuum state [ 71 . Perhaps 

in some deep sense the vexing tachyon dilemma of the conventional dual 

resonance model is somehow a reflection of the sickness of the o3 theory. 

Yet certainly our efforts are ultimately directed toward Nature:-land thus 

the set of graphs considered here can never literally be taken as a “truth. ” 

Hopefully what one can learn by means of abstracting definite character- 

istics, may not be too distant from that “truth. ” 

In Section II we define the model, in III we take the helicity pole 

limit, in IV we discuss the cancellation of spurious singularities, in V 

we exhibit some puzzles and in the Appendix we review briefly the 

Veneziano Transform [ 8,9], which we find quite helpful in obtaining our 

asymptotic results. 
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II. THE MODEL 

Our model is based on the diagram of Fig. 2, where for the 

moment we imagine the three black boxes to correspond to ladder 

graphs of 4 3 theory. Later in Section V we shall discuss a more 

general scheme. We adopt the Regge properties associated with these 

graphs, and thus have for the unsignatured “t’‘-channel trajectory 

and that amplitude associated with the zero momentum, 

where, 

d t = d* rc”, + f !f- j j 

and 
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and at the appropriate time we shall go to the elastic limit in which 

case all primes on the external momenta may be dropped and f (A2)+0, 

As in Ref. [ 41 we shallregard ~yv,~~t, and at, as adjustableparameters. --_ 

Since we are also anticipating the helicity pole limit ,M2 +a, s/ M2 -f m, 

t fixed, Eqs. 2.la, b and c are appropriate approximations. 

The 3-3 amplitude, d , is given by the equation, 

To facilitate the d4k d4k ’ integrations we make use [ 41 of a spectral 

representation for the integrand based on the following identity, 

i 
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for CY , at, and (it, 
V 

in the open interval - 1 to 0 (later we will analytically 

continue to the physically interesting region of positive 0 4 
V 

and Q~) 

and obtain the resulting expression, 

The sextuple spectral function p absorbs the free particle propagation 

functions and provides for the off-mass shell behavior of the Regge 

residues, p’*) $‘) , , and p. 
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As was the case in Ref. [ 41,we shall see that the superconvergence 

properties of p play a central role in obtaining the familiar 

MQV (s/ M2) 
2cY 

t energy dependence of the helicity pole limit 

2 
(s - 03, s/M + ~0, t fixed). 

Our calculation is now reduced to computing an equivalent Feynman 

graph corresponding to Fig. 3. For simplicity we have assumed that all 

external particles are massless. We have checked the calculation 

for the massive case and found the external mass effects play no 

essential rule for the asymptotic properties discussed here. 
5 

It is to our advantage to compute the graph by means of the Symanzik 

rules [10], since they explicitly display the Mandelstam channels 

present in the graph. A straight forward yet tedious computation 

yields : 1 

where the kinematic variables are defined by the relations: 
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atid tihe?CI 
Sf 

is given by the following relation: - - 2 
_- 

with p factorizing as: 

We note an important symmetry of p which follows trivially from our 

graph (see Fig, 3. ) in tp e&tic limit: 
% 

and thus 

f - P under the exchange y2 - x2, x1 - yl, and z1 - z2, c z d I 
= 

We sh.aiJ cake use of this syrnrnxt$ &S&tions III and IV... 

D ii given’ by the equation: _ .~-- 

‘o= 
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and C by the relation 

It is understood that each internal squared mass has implicitly 

associated Fegnman’s -i E. 

We have found it enormously useful,in both performing m2 integra- 

tions and taking the high energy limit by means of the Veneziano Trans- 

form,to re-express Eq. (2.5) interms of the Nambu-Schwinger [ 111 

representation. We thus obtain7 : 
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Using the relation, 

m 

i 

&- I - x’; 
dx x e c, ‘p 

0 
(2, IC ‘I 

we easily perform the m2 integrations which yields the equation, 
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III. THE ASYMPTOTIC LIMIT 

We go to asymptopia in two steps: we first take the s, s’*a~ 

limit and then the M,” -, ~0 limit. As can be seen upon inserting 

the kinematic relation, 

into Eg. (2,7a) the final limit will be the more subtle since clearly the 

coefficient of the Mz term in Eq. (2.11) is not positive definite in the 

domain of integration. We proceed to the s, s’ infinite limit. 

Using the techniques developed in references [ 8~. ] and [ 9 3, and 

sketched in the appendix, we multiple transform A in Eq. (2.11) on s and 

s’ obtaining the expression, 
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where El , zand & are given by: 

with F defined by the equation: 

We remark that the Ffunctions are well behaved throughout the 

entire range of integration. Moreover,as can be easily seen when their 

arguments approach infinity,the T and T S s, dependence vanishes from 

the integrand in Eq. (3.2). Thus all singularities in -rs and TV, can 

only appear through the first six terms of the integrand of Eq. (3.2). 

Anti-transforming 2 in Eq.(3.2)and takings, and s’ to minus infinity 

we find the following approximate asymptotic expression, viz, 

where f is given by, 
oe 
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We remark that the apparent singularities at TV, us, = - 1, - 2,. . . 

originating from the terms (yl + y2 + y3 ) TS and (x1 +x2 +x3) TS’ 
will be precisely 

cancelled due to the superconvergence properties of the spectral function P. The 

intergrand f in each case respectively will be either independent of the mass 

pairs (t*’ > p2 1, (p2 , p2 
Y1 x1 x1 x2 

) or produce powers of p2 at the singular points. As 

was discussed in Ref. [ 41, at least for 43 theory, the required superconvergence 

property indeed keeps pace with singularities generated from the two terms, 

(Y, +Y2 +Y3)Ts> 
7 , 

and (x1 +x2+x3) ’ in Eq. (3.6). A similar argument 

applies to potential singularities arising when C 40. 

We are thus left with the singularities originating in T s and Ts, 

appearing when x 3’ Y3 andz3 approach zero. We pick up the residues of 

8 
the leading ones when x3, and y3 + 0, to wit: 

T,= d* when %3 - a 

and obtain (we now set cy t =cY t , ) the follo wing relation, 

where g is defined by the integral: 
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a-Dd where “c and 6 are given by the equations, 

We note that singularities which would appear when the factors ~c 

(x1 + x2) and (yl f yz) approach zero ,Jn..Eq.- (3’.8 )arem fake,, tka_rl$_s 

Zi$jZiTi toGKii6F6Znve r g e nc e . L- .--~ ~_~ -_ .~~~~- ~-- -~~ 

In turning our attention to the rather subtle limit: M2 s + a, 

-. ~~_~ -~ -~-. a-bit mor@~-<aFe is required wi<hIrr$spect to our transform t66-&ime.- _~ ~-~ ~-~ ~~ 
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The two central issues involved are: a) its very existence, and 

b) an amusing symmetry of our amplitude which in the elastic limit, 

even signaturizes the amplitude in the A2 channel. 

With regard to point (b) we observe that 

This result can be seen by noting that sending Mz into Mi is equivalent to 

interchanging y2 - x2 and x1 - yl, yet apart from the e function and the 

coefficient of ?? in Eq. (3.10), the remaining inter grand is invariant under this 

transformation, However, thanks to the symmetry of p, Eq. (2.6’), “c 

and the coefficient of “c,in Eq. (3.lO),remain unchanged if in addition we 

interchange z -z 
1 2’ Thus the combined transformation 

yA - *A 
-xl - “rst 

results in Eq. (3.11). 9 (3.L‘) 

With respect to point(a) we shall observe that the transform exists 

inthedomain Mi>O, x y 2 1 ‘x1 y2 andMz<O, andx y 1 2 ’ x2 YI’ 

We are thus invited to re-express Eq. (3.8) as 
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where, 

with p denoting, 

and R the integrand of 5. We note that due to the above 8 functions 

Eq. (3.14 a) will have the right hand cut and Eq. ( 3.14 b) the left. 10 

We further define a symmetrical pair of asymptotic variable by the equation: 

and 

and transform separatelyv (+) and $j?(-); to wit: 

-Tctim 

I .. 
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Upon performing the d%Ii and d$ 
U 

integration we obtain the 

following transformed amplitudes, 

and 

where “D is given by the expression, 
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and 2 is given by the relation, 

.5? 
S/‘n “%+ 

r(d +,) 
v ’ ( ? -- - ‘1 

Recalling Eq. (3.3’ ) y and F 2’ 

M2 
are both given by the expression 

U 

We observe that there are important poles in the T variable in both 

.A?+‘and2-’ at: 

-r 

5’ 
= dv-.zf+-TL ; 4=c,1,2 ,‘., 1 (373 1 

when z 
3 -, 0 and require no special discussion. However, we will returnto 

them shortly to obtain the helicity pole limit. The poles which seem to 

appear when, p - 0 at 

require a more delicate discussion. 

Note that at the tip of the cut in the Nambu-Schwinger parameter 

space (x 1 =x 2 = Yl = Y.2 = O).The singularities at 7 =-nare 

cancelled due to the superconvergence properties of the spectral 
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function, yet of course, the singularities will remain for finite 

11 
X1’ X2’ Y1 and Y2. 

Before applying the suitable anti-transforms on, $?’ in Eq. (3.17a) 

and @ (-) in Eq. (3.17b), it is useful to rewrite ]p 1’ 8 (p) and 1 p 1 T 6 (-p) 

in terms of generalized functions [ 121 . 

and 

-+ F-, 

where FT-- and F- 
-n are regular at T, 7’ = -n 

The generalized functions permit a simple evaluation of the residues of 

the poles at T, T’ = -n in Eqs. (3.19a,b). Those at the even negative 

integers are zero since apart from the factor 6 (n-1) (p)‘ the remaining 

function is even 
12 

in /3, and hence when integrated over p gives 

zero. 

We thus obtain for odd n: 



and 
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Eqs. (3.26 a and b) lead to the following asymptotic results: 

and 

which we recognize as a string of fixed poles at nonsense wrong 

signature points. ) Here is our first “third double-spectral-function 

effect” as was mentioned in the introduction, Moreover, we note that 

because ME is associated with integral powers, ’ r:;; A&; and 

A’-” 
F 

cannot contribute to the M,” or Mi discontinuity, and clearly 

not to the asympotic behavior of the inclusive single particle cross 

section. Furthermore, as may be easily seen, the sum, A#$ + &tfg! 

is identically zero. Thus the full amplitude has no fixed power behavior, - 

The fixed poles, nevertheless, make their presence known .- as was the 

case for the B-2 amplitudes in modifying the structure of the Regge 

residue function. Th& will become evi-dent as we now turnto the singularities 

which are generated when z 3 vanishes in Eqs. (3.19a and b). 

Upon evaluating the residue of the leading 
13 

singularity generated 

when z3-+0, in Eqs. ( 3.19a and b) , we find the following asymptotic 

behavior for their contribution to +3 and A”-? 



where : 

We note that in Eq. (3.28a) &? ‘i) will have the right hand M2 cut 

and in Eq. (3.28b),inA(i) the left hand M2 cut. 

We can now trivially take e. g. the M2 discontinuity across the 

right hand cut and continue s above the right hand complex s plane cut 

and s’ below the complex s plane cut and obtain 



-24- THY-23 

.! 

which is, of course, directly proportional to the single particle 

distribution, and is moreover the familiar helicity pole limit [ 61. 

We observe, that-if-we decree (Y and a to be the pomeron --.p-F---*- -. T-. -~---.~-..-_- - ..-.--_ _ .~~ -- 
__ 

trajectories, the vanishing of the triple pameron vertex at - -- 
.---&____- -. -__ ---_ --.. --_ 

;F;;‘); bike- - , the-Zero-obtained previously in Refs._ 14,13]- will 
OJ __~ -~- 

r no longer hold. due to the factor (3: 
- 25 

which is singular when 

o! -2c! =-1. ‘V t Furthermore, it is amusing to note that we will still 

have a ,vanishing result when the exponent cuv - 2 ut, is a negative even 

t+, integer for precisely the same reason that A F and A$?‘- a F had only 

wrong signature fixed poles. 

We remark that the potential singularities due to the terms 

[("$+x2) (Y,+YzN 
5: ,-2-d,, 

and C =will be cancelled due to the super- 

convergence properties of Is. 
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Finally, it is appropriate to mention at this stage the external 

masses which w.ere taken to zero for reasons of simplicity of presen- 

tation. We have seen that the asymptotic limit of the absorptive parts 

of both A$?: and d’i’ arose from singularies in the ;.‘t 

variables when x 3’ y3j and eventually z 3 
where taken to zero. One 

can easily check that every external mass factor will have either 

X3’ Y3’ or z3 as an overall multiplicative. factor, and thus for the 

helicity pole limit .&he external, mass .factor s would eventu:aUy vanish 

from the final answer. 
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IV. THE CANCELLATION OF SPURIOUS POLES 

As is quite evident from Eqs. (3.28 a and b ) , &Z?‘l and ki’ 

infLac,t. appear to have spurious singularities at 

Using the relation 

l+) 
we rewrite d R and J I- ‘9 

R 
as: 

and 
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and observe that again due to the symmetry of the amplitude under the 

transformation: 

f’here are, in’fact, no spurious singularities at !, -2, 4, -6,. . - 

The physical amplitude is, of course, the sum of Eqs. (4.2 a) and 

(4.2b). However, thanks to the properties of p+ and p- [see Eq. (3.2-5-a 

Z%d b) ]I, the spur?ous singularltles .cancel upon- _s_u_mmation. 

This mechanism of cancellation is quite different 

from the planar case [ 41, in which there was only~a right h-and cut 

and the spurious singularities wersccancelled by means of a compensation- 

mechanism. Here, however, both the amplitudes associated with the 

right and left hand cuts have spurious poles, and cancellation only 

occurs upon summation. 
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V. PUZZLES AND COMMENTS 

As is well known [ 14, 151 
$4. 

consistency between an assumed pomeron 

dominated constant total cross section [cyp (0) = 11 and the non-vanishing 

of the triple pomeron vertex at t = 0 is an impossibility. Thus under 

the above assumptions, our final result, Eq. ( 3.29 ), is clearly 

incomplete. Certainly the simplest resolution (aside from decreeing 

that the unknown spectral function itself has an overall zero at t = 0) 

is to let; the pomeron intercept lie below one by a small amount r) . 

In this case r) would be perhaps a quite fundamentalpositive parameter 

as is the case in the Schzephreltiic Pomeron Model of G. F. Chew and 

D. Snyder [ 161. Our graph mi’ght re.pres&&.some sm%ll”ddditional term 

to be considered within their framework. 

At present, direct experimental evidence of a deviation 

from unity for the pomeron intercept is non-existent. We feel a con- 

frontation with this puzzle at this time is not at all an academic exercise. 

In fact, quite recently H. D. Abarbanel and M. B. Green [ 171 have 

addressed themselves to this issue by considering effects generated 

by inserting a single Regge cut in the vacuum channel (a;,) of the elastic 

six -point amplitude. We certainly share with them the attitude that 

Regge cuts must play a central role in the resolution of the puzzle 

(which for them involved “proving” that the residue of the nonsense 

wrong signature fixed pole vanishes at t = 0), yet we find their argu- 

mentation ’ t. incomplete. At issue is the frightening collision of 



-29- THY-23 

singularities at t = 0, viz., the fixed pole, three pomeron trajectories, 

and a three-fold infinity of Regge cuts. It appears to us that a systematic 

approach to the disentanglement of these singularities is required. Such 

a program has been carried out, recently in a fascinating sequence of 

papers by J. B. Bronzan [ 181 and J. B, Bronzan and C.H. Hui [ 191 , and 

earlier,using quite different techniques,byV.N.Gribov [ 201 , and 

V. N, GribovandA.A. Migdal [ 211 for the elastic 2-2 amplitude. An .- _.. 

investigation in the same spirit might now be appropriate for the elastic 

3 - 3 amplitude. 

In Section II we promised to suggest a somewhat more general 

model calculation than the one performed here. We have always had 

in mind the 4 3 theory, that is to say,the black boxes represented an 

iterative sum of ladder graphs, and the spectral function the solution 

to the o 3 Bethe-Salpeter equation. Recently, J. Scherk [ 221 has 

discovered that a well defined zero slope limit of the dual resonance 

perturbation expansion limits to the Feynman-Dyson expansion of the 

4 3 theory. I5 Furthermore, he noted that the pomeron singularity 

vanishes in the limit. In the dual model the pomeron has an identifiable 

16 mathematical representation, related to the experimentally sound [ 231 

Freund-Harari [ -241 hypothesis. It appears that none of the -#3 

ladders can ever actually repres.ent the pomeron in the sense suggested 

by Freund and Harari. 

We are thus led to take the black boxes (in the spirit of Gribov) to 
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actually represent the pomeron, and consequently are left at this stage 

with truly unknown spectral functions I whose superconvergence 

properties must be assumed, l.7 inor-der to:obtam the helicity pole limit __.~~~~~_~ ~. ~..~. - 

at t = 0,~~ (0) = 1, Moreover, as will be discussed in a subsequent 

paper, !bPionization Limit for the Single Particle Distribution: Duality 

and the Feynman Graph II, ” our initial assumption of incorporating the 

free propagation functions for the scalar partic-lds of the graph into 

the spectral functionappears to us too restrictive. Wejfeel asomewhat more _ 

realistic model: ’ should include a far richer spectrum of particle 

states propagating along the lines labeled x . and 1’ x2; Yi’ Y2’ z 1’ z2’ 

in the graph of Fig. 3. This appears quite important if we are to 

compute other limits of the single particle spectrum, such as for 

example, the asymptotic transverse momentum distribution in the 

pionization limit. 

We conclude with a conjecture,(which in view of the recent work 

of J. Scher’k [ 221 might possibly be not too difficult to prove), concerning 

an asymptotic link between r$ 
3 theory and the conventional dual model. 

We have observed that Regge limits (obtained from sums 

of planar 43 diagrams calculated in the strong coupling regime have 

the form: 

; .‘18 
of ladders) 
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where R symbolizes the Regge asymptotic power, F a known function 

which is identical to that obtained from the dual tree model, X the 

spectral function, 
19 

(i, e, the solution of the Bethe-Salpeter equation), 

and 
c- 

J 
2 indicates either a kind convolution involving F X or indeed, 

for some limits there may be no convolution at all, E-or example, in 

Ref. [4] , F was given by I7 

We further conjecture that 

the Regge limits of non-planar 

here), i. e. 

a form similar to Eq. (5.1) holds for 

93 configurations (such as discussed 

where F’ is essentially identical to the residue functionobtained from the Regge 

limit of lowest order dual loop or sum of loops [ 231 22 
which asymptotically 

has the same Mandelstam channel as the reduced equivalent $3 graph 

(e. g. , Fig. 3 ) and R ’ is the Regge power associated with the non-pomeron 

contribution to the limit. One of the possible lowest order dual loop 

diagrams which is applicable here,(there are centainly others), is 

given in Fig. 4. We note in passing that this graph has already been 

considered in Ref. [ 251 as an important contribution to the fragmentation 

limit of the single particle distribution. There we were concerned with 

the pomeron component of the graph, and the generalization for the 

single particle distribution of the Freund-Harari conjecture. 
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We began our paper with remarks concerning the interrogation of 

the $3 theory with regard to various “new” developments, which appeared 

from time $ time, in our gradual gttempts toward a fundamentaiunderstanding 

of that vexing yet beautiful aspect of Nature- -the world of hadrons. As 

we have seen the link between the theory and the dual resonance 

model is indeed non-trfvial. Moreover, the latter model appears to us 

to be a far more realistic representation of the experimental facts of the 

hadronic world. Hence, in the future we hope that the conventional dual 

resonance model will be put, more frequently then is done at present, 

to that same important chore--the testing out of new ideas. 
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NOTE 

It has been pointed out to us that a similar model calculation of 

the same non-planar graph, (see Fig. 2. ) using quite different 

mathematical methods has been p.erformed by A. H. Mueller and 

T. L. Trueman. Their conclusion with regard to the cancellation of 

the spurious singularities, and the non-vanishing (vanishing) of the 

helicity pole vertex function at: cyv - 2 ut = - 1, (- 2), - 3, (- 4), , , . , 

are identical to ours. 
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APPENDIX 

In 1969 G. Veneziano proposed [ 81 the Beta function transform 

to study the J-plane analiticity structure of the 4-point dual amplitude, 

(at that time the dual n-point functions were in their infancy). More 

recently we [ 91 have generalized the transform in a rather straight- 

forward manner - -’ into a multiple transform, and have found that the 

multiple transform of the TL -point dual amplitude, is again an n-point 

dual amplitude,&ith well derfined shifts in the trajectory intercepts 

____ i-. ..-___ 
associated with the transform variables and consequently permitting a y 

It had not occurred to us that an object so closely indentified with 

the dual model should pro’ve useful in other areas, --such as taking the 

asymptotic limit of Feynman graphs! Uet,as we hope to have convinced 

the reader,;~,it is indeed useful -and in some respects. perhaps 

one. of-i the sim@J.e&,. transform devices to make use of in tak~fig,~, 

rather involved asymptotic limits. 

Cleatil~ the transform, which we shall define below, needs a far more 

thorough mathematical investigation than exists to date. Moreover, 

since after all its kernal is basically a kind of analytic continuation of 

the reciprocal of a binomial coefficient ,we feel that the transform may 

find use in areas- -far afield from dual models, Feynman diagrams, ,,.d*m. 

inclusive amplitutes, etc. Below we shall define the transform, and 

anti-transform, - and as a trivial example of its applicability apply it 
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to find the asymptotic limit (s - m, t fixed) of the $3 box diagram. Finally, 

we shall define the multiple transform. 

The transformed function ? is given by [ 8, 271; 

and we anti-transform q (t, x) by: 

B (x,y) is the Euler beta function, s the asymptotic variable of 

interest and x denotes collectively those variables which are kept fixed. 

We observe from Eq. (A.2) when - s --f a, we have the asymptotic 

result: 

-t-9= J 
-E -ipC I 

(A.31 

and thus the burden of finding the asymptotic result rest on the 

singularity structure in the T variable of 9 - 

For the purposes of finding the asymptotic limit of a Feynman 

graph,it proves useful to make use of the Nambu-Schwinger representation 
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of the graph, and the following integral reprentatation of the Beta- 

function: 

We consider the Feynman amplitude, Ma, for the box diagram-and for 

simplicity have set the external masses to zero, (see Fig. 5. ): 

where D and C are defined by the equations: 

Using Eq. (A. 1) we have: 
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We evaluate the integral: 

by means of a Wick-like rotation, i.e., we define: 

C c) = +lis\ 
) and obtain, 

(A? ) 

The r integration in Eq. (A. 7) now becomes trivial and we have: 
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We see from Eq. (A.101 the leading T singularity is a double pole at: 

when cy 2 and (y 4 +O. 

Anti-transforming, ZI B ,by means of Eq. (A. 2 ) and picking up the residue 

of the double pole,we obtain the leading asymptotic term: 

where c is given by, 

This is, of course, a cumbersome method--to say the very 

least--to obtain the result depicted in Eq. (A.12). We believe~its utility is 

bourne out when there are several asymptotic variables to be dealt with. 



-39- THY-23 

Thus we define the multiple transform [ 9 ] and make use of it in 

Section III. To wit: for n asymptotic variables s . . . s 
1 n the multiple 

transform is defined by: -q,+ie -T+69 

and the anti-transform is defined by: 

where again X denotes collectively the variables which are to be held 

fixed. Care must be taken when one uses (A.151 where kinematic 

constraints require ratios of asymptotic variables to approach a limit 
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(whenthe lirqit igPunity, >hing~s-<-ap become qgit_e trjcky). If-a discontinuity 

is to be taken, one first takes the disc&gity and thenimposes the kmeniatic -~ 

constraint. For the purpose of this paper, this word of caution really 

never arises,but it has been noted [ 28 1 that for the twoyparticle distribution 

such subltiess do indeed appear. 
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FOOTNOTES 

1’ We believe our calculationneed not be restricted to the ladder graphs of 

$3theory, i. e. the essential requirements are that the black1 boxes be 

Regge behaved and the spectral functions satisfy a well define set of 

superconvergence conditions. 

‘,2- 
We use the term helicity pole limit to mean: s + a, M2 + a,, 

,1 s --T-co, 
M2 

and t -- fixed. This is not to be confused with the quite 

different triple Regge limit in which a non-forward 6-point amplitude, 

has six channel variables taken to infinity. For an interesting 

discussion concerning the relation of these two limits see, C. E. DeTar 

and J. H. Weis, to be published in Phys. Rev. 

We have choosen a particularly manageable subset of non-planer 

graphs, There are certainly more involved non-planar graphs such 

as those containing cuts in 25 Mandelstam channels (the maximal 

number) for the non-forward amplitude. We have no idea what new 

features might or might not emerge upon considering such complex 

graphs. 

.,;+ 
As discussed in Ref. [ 41 , continuation below - 1 in a;~ and ut, 

is prohibited since we would obtain contributions from the non-leading 

pieces (the Regge-daughters) in the Regge black boxes. 

5 See the last paragraph of Section III, Strictly speaking at t = 0, we 

should retain some external masses for otherwise there ..would be no . 

separation of the left and right M2 hand cuts at t = 0. 
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6 
We have not included in the D function,the two particle, 

- (P - P’ I29 channel, nor any three particle channel which 

yields a vanishing contribution to the elastic limit. 

We thank S. D. Ellis and. S. B.Treiman for discussions concerning 

the transition from the Feynman to the Nambu-Schwinger 

representation. See also R. J. Eden et al. , p. 152 of Ref. [ 11 . 

The actual representation we make use of is analogous to the 

Laplace as opposed to Fourier version of the amplitude, 

8 An evalution of the z + 0, contribution, 
3 which is a bit more subtle :,leads 

directly to an M2 independent result, i. e., the amplitude, A, 
ct 

behaves like s v in the elastic limit. A very similar phenomena 

occurs for the-planar graph considered in Ref. [-43-l 

9 
These symmetries can be seen quite easily by inspecting the 

graph depicted in Fig. 3, with,however,the lines x3 and y3 contracted. 

10 
We thank A. Sanda for several discussions concerning the separation 

of left and right hand M2 cuts. We refer the reader to an interest- 

ing discussion by A. Sanda, NAL preprint, THY-25 (1971), onthe 

analyticity properties of the 6-point amplitude, which relates to 

the helicity pole limit. 

9 t is amusing to note that the vanishing of the discontinuity across 

the tip of the cut in the Nambu-Schwinger parameter space is some- 

what analogous in many respects to the well known tip of the cut 

theorem of J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 
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1494 (1967), where, of course,at issue their was the analytic 

structure of an isolated J-plane cut. 

12 
The symmetry in p follows from our discussion of the symmetry: 

13 Retaining non-leading terms here appears inconsistent with our 

assumption that the Regge boxes are govern by the leading Regge 

singularity, (see footnote 4). 

14 Although the results quoted are not explicity stated in the sum rules 

(identical to those of Ref. 14) of T. T. Chou and C. N. Yang, 

Phys. Rev, Letters 25, 1072 (1970) we believe they must be implicity - 

present. We further remark that a general formulation of the inclusive 

sum rules has been recently given by E. Predazzi and G. Veneziano 

CERN preprint TH. 1378 (1971), see also S. -H. H. Tye MIT pre- 

print, CPT 239 (1971). 

15 The fact that this result arises in our opinion is truly amazing due 

to the quite different combinatorial aspects of the dual perturbation 

expansion and the Feynman-Dyson expansion. 

16 The position of the pomeron intercept is in fact, dual model dependent, 

i. e. different dual-factorizable, and possibly ghost free models yield 

different results. For a detailed discussion of the pomeron of the 

dual model and it’s relation to the Freund-Harari conjecture we refer 

the interested reader to, G. Veneziano, invited talk at the International 
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Conference on Duality and Symmetry in Hadron Physics, Tel-Aviv, 

Israel, 1971, (proceedings to be published). 

17 Presumably t-channel unitarity should provide some information 

on this question, 

18 When we refer to ladders, we do not include ladder graphs in which 

e. g. 2 or more ladders are wielded together at their sides and with 

their rungs alternating, 

19 X in fact, includes a bit more than the spectral function, indeed, we 

also include the computable cut structure that emerges at the junction 

of the three Regge black boxes. 

20 See I, T. Drummond, P. V. Landshoff and W. J. Zakrzewski, 

Nucl. Phys. B11, 383, (1969), Eq. (3.13) for an example of the 

convoluted form. 

21 One can indeed, argue that the product of a known function times an 

unknown function, whose only properties we make use of are its super - 

convergence behavior, could yield anything one desires. We are, 

of course, assuming that the spectral functions are not so perverse 

as to cancel the effects generated from the known functions. If 

one believed in such a happenstance then one can ignore Ref. [ 41 

and the conclusions of this paper. 

22 
We note here the significant new development in dual loop theory [ 261 

by V. Alessandrini, D. Amati, and B. Morel, CERN preprint TH 1406 



-45- THY-23 

.- 

(1971), in which the asymptotic limits of the orientable non-planar 

box diagrams has been rigorously calculated and found to be convergent 

in the right half complex s -plane. Thus we feel an asymptotic evalu- 

ation of e. g. the graphs discussed in Ref. [ 251 , and a test of our 

second conjecture should be possible in the near future. 
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FIGURE CAPTIONS 

THY-23 

Fig, 1. The planar three Reggeon Graph. 

Fig. 2 The non-planar threeX$g@n~Graph, for the model 

calculation considered here. (Note that the obvious 

presents of the left and right hand M2 singularities. ) 

Fig, 3 The reduced equivalent non-planar three Reggeon Graph. 

Fig. 4 A non-planar dual amplitude. (See Section V of text. ) 

Fig. 5 The 63 box diagram, (See Appendix ) 
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